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Change point detection

Change point detection (CPD): detect abrupt changes in the states of time series1.

Non-parametric: no prior knowledge of the data distribution.

Online: process the stream on the fly, ideally without storing raw data.

1Samaneh Aminikhanghahi et al. “A survey of methods for time series change point detection”. In: Knowledge and information systems 51.2 (2017),
pp. 339–367.
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CPD on Riemannian manifolds

Many features of signals are lying on different manifolds, e.g.,

Covariance descriptors

Subspace representations

Investigate CPD on manifolds can impact many applications, e.g.,

earthquake detection2 video change detection3 subspace change detection4

2https://www.earthquakescanada.nrcan.gc.ca/eew-asp/system-en.php.
3https://intvo.com/.
4https://bering-ivis.readthedocs.io/en/stable/.
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CPD on Riemannian manifolds

Developing methods on Riemannian manifolds is challenging:

the nonlinear geometry;

lack of vector space structure.

Few works have investigated CPD for manifold-valued data:

a parametric algorithm5;

an offline technique6.

This work introduces a general framework for non-parametric and online CPD on Riemannian
manifolds.

5Florent Bouchard et al. “Riemannian geometry for compound Gaussian distributions: Application to recursive change detection”. In: Signal Processing 176
(2020), p. 107716.

6Paromita Dubey et al. “Fréchet change-point detection”. In: The Annals of Statistics 48.6 (2020), pp. 3312–3335.
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Riemannian optimization: main tools

A few important tools:

Riemannian gradient: ∇f (x) ∈ TxM
Exponential mapping: expx : TxM → M (maps a vector in the tangent space back to
the manifold)

Riemannian distance: dM (length of the shortest path between two points on M)
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Riemannian optimization: R-SGD, basic structure

Considering a cost f (x), x ∈ M we proceed as7:

compute a stochastic approximation of ∇f (x) at x
“take a step in the negative gradient direction” on M using the exponential mapping

7Silvere Bonnabel. “Stochastic gradient descent on Riemannian manifolds”. In: IEEE Transactions on Automatic Control 58.9 (2013), pp. 2217–2229.
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Problem formulation

There exists a time index tr ∈ IN with an abrupt change in the probability measures8 of x t

lying on M, that is:

t < tr : x t ∼ P1(x) , t ≥ tr : x t ∼ P2(x) , (1)

where tr is the so-called change point.

The CPD problem on M consists of estimating tr with the following requirements:

high detection rate;

low false alarm rate;

low detection delay.

8Xavier Pennec. Probabilities and statistics on riemannian manifolds: A geometric approach. Tech. rep. 5093. INRIA, 2004, pp. 1–49.
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The algorithm: the Karcher mean

Consider monitoring the Karcher mean9 on M, defined as

m∗ ∈ argmin
m

f (m) . (2)

where the Karcher variance

f (m) = Ex∼P(x)
{
d2
M(m, x)

}
=

∫
d2
M(m, x)dP(x),

,
9Hermann Karcher. “Riemannian center of mass and mollifier smoothing”. In: Communications on pure and applied mathematics 30.5 (1977), pp. 509–541.
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The algorithm: online estimation

To achieve online detection, we consider using the R-SGD algorithm10 to address problem (2):

mt+1 = expmt

(
− αH(mt , x t)

)
, (3)

where H(m, x) denotes the unbiased stochastic gradient of the loss such that

Ex∼P(x)
{
H(m, x)

}
=

∫
H(m, x)dP(x) = ∇f (m).

10Silvere Bonnabel. “Stochastic gradient descent on Riemannian manifolds”. In: IEEE Transactions on Automatic Control 58.9 (2013), pp. 2217–2229.
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The algorithm: an adaptive CPD

mbef maft

To detect change points by monitoring abrupt changes in m,

Compute estimates m̂bef and m̂aft;

Compare these two quantities using dM(m̂bef , m̂aft).

Rationale: The larger the dM(m̂bef , m̂aft), the more likely to flag t as a change point.

How to detect change points in an online way?
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The algorithm: an adaptive CPD

We consider two estimates with two different fixed step sizes λ < Λ as follows:

mλ,t+1 = expmλ,t

(
− λH(mλ,t , x t)

)
, (4)

mΛ,t+1 = expmΛ,t

(
− ΛH(mΛ,t , x t)

)
. (5)

Convergence is directly affected by λ and Λ:
mbef maft

An adaptive CPD statistic is given by:

gt = dM(mλ,t ,mΛ,t) . (6)

CPD is then performed by comparing gt to a threshold ξ.
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The algorithm: preview of the results
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1. Can we provide some performance guarantees?
2. How to determine a detection threshold ξ?
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Theoretical analysis: convergence

The performance guarantee of our statistic gt is based on a non-asymptotic convergence
analysis of the R-SGD algorithm:

Theorem

With some assumptions, for any s ∈ N∗, the stochastic Riemannian gradient descent algorithm
with a constant step size α satisfies:

E{f (ms)− f (m∗)} ≤ (1− ϵ)(s−1)D2

2α
+
ασ2

2ϵ
, (7)

with ϵ = min{ 1
ζ(κ,D) , αµ} and ζ(κ,D) =

√
|κ|D

tanh (
√

|κ|D)
.
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Theoretical analysis: performance guarantee

Theorem

Under the null hypothesis H0, x0, x1, . . . , x t−1 are drawn i.i.d. from P(x) with the Karcher
mean m∗. With some assumptions, at a steady state, the false alarm rate can be upper
bounded by:

P(gt ≥ ξ|H0) ≤
2

ξ

(
f (m∗) +

(λ+ Λ)σ2

4ϵ

) 1
2

. (8)

with ϵ = min
{

1
ζ(κ,D) , λµ

}
and ξ > 0 the detection threshold.

This analysis shows that a higher detection threshold ξ and smaller Karcher variance f (m∗)
make this bound tighter.
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Theoretical analysis: performance guarantee

Theorem

Under the alternative hypothesis H1, x0, x1, . . . , x t−B−1 are drawn i.i.d. from P1(x) with
Karcher mean m∗

1, and x t−B , x t−B+1, . . . , x t−1 are drawn i.i.d. from P2(x) with Karcher
mean m∗

2. With some assumptions, the detection rate can be lower bounded as:

P(gt > ξ|H1) ≥
dM(m∗

1,m
∗
2)− ψ(λ)− ϕ(Λ)− ξ

D − ξ
, (9)

where ψ(λ) =

(
2fbef(m∗

1) +
λσ2

ϵ

) 1
2

+ λρB and ϕ(Λ) =

(
2faft(m∗

2) +
(1−ϵ)BD2

Λ + Λσ2

ϵ

) 1
2

.

This analysis shows that larger values of dM(m∗
1,m

∗
2) and smaller values of ξ, Karcher

variances fbef(m∗
1) and faft(m∗

2) make this bound tighter.
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Adaptive threshold selection

Under the null hypothesis, approximate gt by a Gaussian distribution, set ξ as an estimate of
the q-th quantile of gt by computing only its first two moments11: βgt = (1− α)βgt−1 + αgt ;

γgt = (1− α)γgt−1 + αg2
t ; ξ̂t = βgt +

√
γgt − (βgt )

2
√
2erf−1(2q − 1).
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Figure: Distribution of gt under the null hypothesis (left) and illustration of the adaptive threshold
procedure (right).

11Nicolas Keriven et al. “NEWMA: a new method for scalable model-free online change-point detection”. In: IEEE Transactions on Signal Processing 68
(2020), pp. 3515–3528.
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Applications and experiment setups

We apply our strategy to two manifolds as examples:

The manifold of symmetric positive definite (SPD) matrices: S++
p ;

The Grassmann manifold: Gk
p .

Baselines:

Scan-B12, NEWMA13 and NODE14: designed for Euclidean spaces, online;

F-CPD15: designed for manifold-valued data, offline.

12Shuang Li et al. “Scan B-statistic for kernel change-point detection”. In: Sequential Analysis 38.4 (2019), pp. 503–544.
13Nicolas Keriven et al. “NEWMA: a new method for scalable model-free online change-point detection”. In: IEEE Transactions on Signal Processing 68

(2020), pp. 3515–3528.
14Xiuheng Wang et al. “Change Point Detection with Neural Online Density-ratio Estimator”. In: IEEE international conference on acoustics, speech and signal

processing (ICASSP). 2023.
15Paromita Dubey et al. “Fréchet change-point detection”. In: The Annals of Statistics 48.6 (2020), pp. 3312–3335.
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Experiment with synthetic data on S++
p

400 600 800 1000 1200 1400 1600 1800 2000

0

1
NODE

400 600 800 1000 1200 1400 1600 1800 2000

0.025
0.050
0.075 F-CPD

400 600 800 1000 1200 1400 1600 1800 2000
0.02

0.04

0.06 Scan-B

400 600 800 1000 1200 1400 1600 1800 2000

1.0

1.5 NEWMA

400 600 800 1000 1200 1400 1600 1800 2000

0.2

0.3

0.4 Our

18 / 24



Experiment with synthetic data on S++
p
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Figure: ROC curves, ARL versus MDD for the compared algorithms.
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Experiment with synthetic data on Gk
p
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Experiment with synthetic data on Gk
p
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Figure: ROC curves, ARL versus MDD for the compared algorithms.
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Voice activity detection

4 seconds of real speech from the TIMIT database16 was added to 15 seconds of background
noises from the QUT-NOISE database17, with −3 dB Signal-to-Noise Ratio.
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Figure: ROC curves, ARL versus MDD for voice action detection.

16John S Garofolo. “Timit acoustic phonetic continuous speech corpus”. In: Linguistic Data Consortium, 1993 (1993).
17David Dean et al. “The QUT-NOISE-TIMIT corpus for evaluation of voice activity detection algorithms”. In: Proceedings of the 11th Annual Conference of

the International Speech Communication Association. International Speech Communication Association. 2010, pp. 3110–3113.
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Skeleton-based action recognition

Use the HDM05 motion capture database18. and generate data points Σt ∈ S++
p with p = 93

by computing the joint covariance descriptor19 of 3D coordinates of the 31 joints.
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Figure: ROC curves, ARL versus MDD for skeleton-based action recognition.

18M. Müller et al. Documentation Mocap Database HDM05. Tech. rep. CG-2007-2. Universität Bonn, 2007.
19Mohamed E Hussein et al. “Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations”. In: Twenty-third

international joint conference on artificial intelligence. 2013.
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