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Change point detection

Change point detection (CPD): detect abrupt changes in the states of time series!.
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@ Non-parametric: no prior knowledge of the data distribution.

@ Online: process the stream on the fly, ideally without storing raw data.

1Samaneh Aminikhanghahi et al. “A survey of methods for time series change point detection”

. In: Knowledge and information systems 51.2 (2017),
pp. 339-367.
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CPD on Riemannian manifolds

Many features of signals are lying on different manifolds, e.g.,
@ Covariance descriptors
@ Subspace representations

Investigate CPD on manifolds can impact many applications, e.g.,

earthquake detection? video change detection>  subspace chgnge detection?

2https://www.earthquakescanada.nrcan.gc.ca/eew-asp/system-en.php.
3https:/ /intvo.com/.
“https:/ /bering-ivis.readthedocs.io/en/stable/.
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CPD on Riemannian manifolds

Developing methods on Riemannian manifolds is challenging:
@ the nonlinear geometry;

@ lack of vector space structure.

Few works have investigated CPD for manifold-valued data:
@ a parametric algorithm5;

@ an offline technique®.

This work introduces a general framework for non-parametric and online CPD on Riemannian
manifolds.

5Florent Bouchard et al. “Riemannian geometry for compound Gaussian distributions: Application to recursive change detection”. In: Signal Processing 176
(2020), p. 107716

5Paromita Dubey et al. “Fréchet change-point detection”. In: The Annals of Statistics 48.6 (2020), pp. 3312-3335.
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Riemannian optimization: main tools

A few important tools:
e Riemannian gradient: Vf(x) € T,M

e Exponential mapping: exp, : TxM — M (maps a vector in the tangent space back to
the manifold)

@ Riemannian distance: dp (length of the shortest path between two points on M)
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Riemannian optimization: R-SGD, basic structure

Considering a cost f(x), x € M we proceed as’:
@ compute a stochastic approximation of Vf(x) at x

@ “take a step in the negative gradient direction” on M using the exponential mapping

7Silvere Bonnabel. “Stochastic gradient descent on Riemannian manifolds”. In: |EEE Transactions on Automatic Control 58.9 (2013), pp. 2217-2229.
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Problem formulation

There exists a time index t, € IN with an abrupt change in the probability measures® of x;
lying on M, that is:

t <t : x¢~ Pi(x), t >t xt~ Py(x), (1)
where t, is the so-called change point.

The CPD problem on M consists of estimating t, with the following requirements:
@ high detection rate;
o low false alarm rate;

o low detection delay.

8Xavier Pennec. Probabilities and statistics on riemannian manifolds: A geometric approach. Tech. rep. 5093. INRIA, 2004, pp. 1-49.
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The algorithm: the Karcher mean

Consider monitoring the Karcher mean® on M, defined as
m* € argmin f(m). (2)
m
where the Karcher variance

F(m) = Exvpioy (R (mox)} = [ dby(m. x)aP(x),

1
9Hermann Karcher. “Riemannian center of mass and mollifier smoothing”. In: Communications on pure and applied mathematics 30.5 (1977), pp. 509-541.
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The algorithm: online estimation

To achieve online detection, we consider using the R-SGD algorithm!? to address problem (2):
m:1 = eXpy, ( — aH(m;, Xt))7 (3)

where H(m, x) denotes the unbiased stochastic gradient of the loss such that

Eyp(o{ H(m, x)} = / H(m, x)dP(x) = Vf(m).

105jlvere Bonnabel. “Stochastic gradient descent on Riemannian manifolds”. In: |EEE Transactions on Automatic Control 58.9 (2013), pp. 2217-2229.
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The algorithm: an adaptive CPD

To detect change points by monitoring abrupt changes in m,
o Compute estimates m,or and Mg ;

e Compare these two quantities using daq(Mipes, My ).
Rationale: The larger the du((Miper, Mys), the more likely to flag t as a change point.

How to detect change points in an online way?
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The algorithm: an adaptive CPD

We consider two estimates with two different fixed step sizes A < A as follows:
m) 11 = eXppy, ( — )\H(m)\7t,xt)) , (4)
M t+1 = €XPmy , ( - H(mA,t,Xt)) . (5)

Convergence is directly affected by A and
Myef myy

An adaptive CPD statistic is given by:

8t = d./\/l(m)\,tam/\,t)- (6)

CPD is then performed by comparing g; to a threshold &.
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The algorithm: preview of the results
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1. Can we provide some performance guarantees?
2. How to determine a detection threshold £7
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Theoretical analysis: convergence

The performance guarantee of our statistic g; is based on a non-asymptotic convergence
analysis of the R-SGD algorithm:

With some assumptions, for any s € N,, the stochastic Riemannian gradient descent algorithm
with a constant step size a satisfies:

(1-9eD?  ao®

E{f(ms) — f(m")} < e (7)

¢

|%|D

tanh (\/mD) ’

with e = min{ﬁ, ap} and ((k, D) =
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Theoretical analysis: performance guarantee

Under the null hypothesis Hy, xo, X1,...,X¢—1 are drawn i.i.d. from P(x) with the Karcher
mean m*. With some assumptions, at a steady state, the false alarm rate can be upper
bounded by:

ay
e > €lHo) < & (#(mt) + 2507 ©

with e = min {ﬁ, )\u} and & > 0 the detection threshold.

This analysis shows that a higher detection threshold £ and smaller Karcher variance f(m*)
make this bound tighter.
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Theoretical analysis: performance guarantee

Under the alternative hypothesis Hi, xo, X1, ...,Xt_pg_1 are drawn i.i.d. from Py(x) with
Karcher mean my, and X¢_g,X¢_B+1,-..,X¢—1 are drawn i.i.d. from Py(x) with Karcher
mean mj;. With some assumptions, the detection rate can be lower bounded as:

dp(mi, m3) — p(A) — ¢(A) — €
M 1 2 D_£ , (9)

P(g: > ¢[H1) >

1

1
where 1()\) = (2fbef(mi) n *;’2> 2 + ApB and ¢(N\) = <2faft(m;) + (1—5/2802 + /\z€72> 2

This analysis shows that larger values of du(m7y, m}) and smaller values of &, Karcher
variances fret(my) and fu(m3) make this bound tighter.
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Adaptive threshold selection

Under the null hypothesis, approximate g; by a Gaussian distribution, set £ as an estimate of
the g-th quantile of g; by computing only its first two moments!!: 8¢ = (1 — a)B% ;| + ag:;

V& =(1—ans | +ag? & = B¢+ V/E — (BE)2V2ert1(2g — 1).
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Figure: Distribution of g; under the null hypothesis (left) and illustration of the adaptive threshold
procedure (right).

U Njicolas Keriven et al. “NEWMA: a new method for scalable model-free online change-point detection”. In: |[EEE Transactions on Signal Processing 68
(2020), pp. 3515-3528.
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Applications and experiment setups

We apply our strategy to two manifolds as examples:
@ The manifold of symmetric positive definite (SPD) matrices: S5 +;

@ The Grassmann manifold: gg.

Baselines:

@ Scan-B'2, NEWMA!3 and NODE!*: designed for Euclidean spaces, online;
e F-CPD?®: designed for manifold-valued data, offline.

12Shuang Li et al. “Scan B-statistic for kernel change-point detection”. In: Sequential Analysis 38.4 (2019), pp. 503-544.

BNicolas Keriven et al. “NEWMA: a new method for scalable model-free online change-point detection”. In: |/EEE Transactions on Signal Processing 68
(2020), pp. 3515-3528.

14Xiuheng Wang et al. “Change Point Detection with Neural Online Density-ratio Estimator”. In: IEEE international conference on acoustics, speech and signal
processing (ICASSP). 2023.

15paromita Dubey et al. “Fréchet change-point detection”. In: The Annals of Statistics 48.6 (2020), pp. 3312-3335.
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Experiment with synthetic data on S,
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Experiment with synthetic data on S,
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Figure: ROC curves, ARL versus MDD for the compared algorithms.
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Experiment with synthetic data on gg
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Experiment with synthetic data on g[’;
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Figure: ROC curves, ARL versus MDD for the compared algorithms.
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Voice activity detection

4 seconds of real speech from the TIMIT database'® was added to 15 seconds of background
noises from the QUT-NOISE database!”, with —3 dB Signal-to-Noise Ratio.
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Figure: ROC curves, ARL versus MDD for voice action detection.

16 John S Garofolo. “Timit acoustic phonetic continuous speech corpus”. In: Linguistic Data Consortium, 1993 (1993).
7David Dean et al. “The QUT-NOISE-TIMIT corpus for evaluation of voice activity detection algorithms”. In: Proceedings of the 11th Annual Conference of
the International Speech Communication Association. International Speech Communication Association. 2010, pp. 3110-3113.
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Skeleton-based action recognition

Use the HDMO05 motion capture database!®. and generate data points X, € S/;Hr with p =93
by computing the joint covariance descriptor'® of 3D coordinates of the 31 joints.
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Figure: ROC curves, ARL versus MDD for skeleton-based action recognition.

18M. Miiller et al. Documentation Mocap Database HDMO5. Tech. rep. CG-2007-2. Universitit Bonn, 2007.

19Mohamed E Hussein et al. “Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations”. In: Twenty-third
international joint conference on artificial intelligence. 2013.
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