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ABSTRACT

Hyperspectral image (HSI) deconvolution is an ill-posed prob-
lem aiming at recovering sharp images with tens or hundreds of spec-
tral channels from blurred and noisy observations. In order to suc-
cessfully conduct the deconvolution, proper priors are required to
regularize the optimization problem. However, handcrafting a good
regularizer may not be trivial and complex regularizers lead to dif-
ficulties in solving the optimization problem. In this paper, we use
the alternating direction method of multipliers (ADMM) to decom-
pose the optimization problem into iterative subproblems where the
prior only appears in a denoising subproblem. Then a 3D denoising
convolutional neural network (3DDnCNN) is designed and trained
with data for solving this problem. In this way, the hyperspectral
image deconvolution is then solved with a framework that integrates
the optimization techniques and deep learning. Experimental results
demonstrate the superiority of the proposed method with several
blurring settings in both quantitative and qualitative comparisons.

Index Terms— Hyperspectral image deconvolution, ADMM,
spectral-spatial prior, 3D convolution, deep learning.

1. INTRODUCTION

Hyperspectral imaging captures a series of images of the same scene
over many continuous narrow spectral bands. The high spectral
resolution provided by hyperspectral images enables researchers to
conduct analyses that cannot be done with conventional imaging
techniques. Hyperpectral imaging has been used in many applica-
tions such as remote sensing [1], medical science [2], atmospheric
monitoring [3]. However, observed hyperspectral images are some-
times blurred during the imaging process, leading to degraded per-
formance in subsequent analyses. Thus, it is desirable to restore im-
ages by deconvolution (inversion of the degradation process) tech-
niques before further processing.

Multichannel images contain abundant spectral information
across neighboring wavelengths, making image restoration more
complex than ordinary 2D images [4, 5]. Deconvolution of multi-
channel (multispectral) images involves Wiener filter [4, 6], Kalman
filter, and regularized least-squares [7]. For hyperspectral deconvo-
lution, in [8] the authors use adaptive 3D Wiener filter, and in [4] the
authors use filter-based linear methods for astronomic hyperspectral
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images. 2D Fast Fourier Transforms (FFTs) [9] and Fourier-wavelet
technique [10] are also considered for hyperspectral image restora-
tion, to compute solution efficiently in Fourier and wavelet domains
respectively. Since the deconvolution problem is ill-posed, it is
important to incorporate prior information on images to regularize
the solution. To this end, the fast hyperspectral restoration algo-
rithm in [11] performs deconvolution under positivity constraints
while accounting for spatial and spectral correlation. In [12], an on-
line deconvolution algorithm is devised by considering sequentially
collected data by push-broom devices.

Similar to conventional image deconvolution, properly defining
priors and designing regularizers play an important role in improv-
ing the performance and enhancing the stability of the deblurring
processing. However, it is a non-trivial task to handcraft a powerful
regularizer, and complex regularizers may introduce extra difficulties
in solving optimization problems. The variable splitting technique
is one of the efficient ways to solve optimization problems with a
data fidelity term and a regularization term, especially for the case
with non-differentiable regularizers such as ¢;-norm and TV-norm
regularizations. Within this framework, various methods have been
proposed based on the ADMM [13] or the half quadratic splitting
method [14] to solve a variety of 2D image inverse problems like
denoising, deblurring and superresolution [15-18].

Recently, learning the prior from the data is used for 2D im-
age processing and shows its advantageous over using the hand-
crafted regularizers. Benefiting from the variable splitting technique,
this approach plugs the data-based image denoising methods as a
module in the optimization iterations to solve various inverse prob-
lems [17,18]. This efficient strategy has not been employed in hyper-
spectral image deconvolution problems, though similar difficulties
of designing regularizers are encountered therein. In this work, we
propose a hyperspectral deconvolution technique that uses spectral-
spatial priors learnt from data by a deep neural network. The opti-
mization problem of multichannel image deconvolution is addressed
by the ADMM algorithm. A new effective 3DDnCNN is trained
as a denoiser to learn priors of hyperspectral images. Experimental
results show the effectiveness of the proposed strategy.

2. PROBLEM FORMULATION

We denote a degraded hyperspectral image and its latent clean coun-
terpart by Y € RPX@*N and X € RPX@*Y respectively, where
P, @, and N are the numbers of rows, columns and spectral dimen-
sion of the image. The degraded image and the clean image of the
ith spectral band are denoted by Y; € RFX? and X; € RF*@,
For ease of mathematical formulation, the columns of Y; and X;
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Fig. 1. Architecture of the proposed 3DDnCNN for hyperspectral image denoising.

are stacked to form two vectors y; € RP®*! and x; € RP9XL,
Following the linear degradation model in [11] and supposing that
the convolution is separable over spectral bands, vectors y; and X;
are related by

yi = Hix; +n,;, fori=1,--- N. 1)

where H; is the 2D blurring matrix, n; is the additive independent
and identically distributed (i.i.d.) Gaussian noise with standard de-
viation o for all channels. Under the assumption that {H,}_, are
the same over all channels, i.e., H; = Hfor: = 1,--- | N, we
can estimate x; by seeking the minimum of the following objective
function:

N

1
% = argmin Y oy = Hxi|* + 2(x) @)
=1

where x = col{x;}:_, with col{- - -} stack its vector arguments to
from a connected vector, the first squared-error term is the data fi-
delity term, and ®(x) is the regularizer that enforces desirable prop-
erties of the solution with A > 0 being the regularization parameter.
In hyperspectral image processing, spatial and spectral correlations
are often encoded in ®(x).

3. PROPOSED METHOD AND NETWORK DESIGN

Designing a good regularizor ®(x) along with efficient solving
method is not trivial task. Instead, we propose to learn priors from
hyperspectral data and incorporate it into model-based optimization
to tackle the regularized inverse problem in (2). More specifically,
using the variable splitting technique, we transform problem (2)
into two sub-problems, namely, a simple quadratic problem and a
3D-image denoising problem. These sub-problems are iteratively
solved, using a linear method and a deep neural network, respec-
tively, until the convergence criterion is met.

3.1. Variable splitting based on ADMM

ADMM is adopted to decouple the data fidelity term and the regu-
larization term in (2). By introducing an auxiliary variable z, prob-
lem (2) can be written in the equivalent form:

N

A . 1

X = argmin g §||YZ — Hx;|* + \0(z)
i=1

3)
st. z=x with x =col{x1, - ,xn}.
The associated augmented Lagrangian function is given by
N
1
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Fig. 2. Difference between 2D and 3D convolution.

where v is the dual variable, and p > 0 is the penalty parameter.
Scaling v as u = %v, (4) can be iteratively solved by repeating the
following steps:

N
. 1 .
Xki1 =argmin E §||yi — Hx;|* + gHX x> (5a)
i=1

Zi+1 = arg rnzin AD(z) + g”ik —z|? (5b)
Uk41 =Uk + Xk41 — Zk+1 (5¢)

where X, = zr — uy and Zy = Xg4+1 + ug. In this way, the data
fidelity term and the regularization term in (2) are decoupled into
sub-problems (5a) and (5b). Note that (5a) is a least square problem,
which can be solved analytically with the solution:

Xpa1 = col{(HTH + pI)il(HTyi + p)?k,z‘)}iv:1 (0)
and (5b) can be reformulated as

. 1 -
Zp+1 = arg min — |7k — 2| + P(2) (7)

2(v/A/p)?

which is actually performed in the 3D image domain. From a
Bayesian viewpoint, (7) can be regarded as a denoising problem,
removing Gaussian noise with noise-level y/A/p from the noisy
HSI zj, to obtain the clean HSI zx 1. In other words, a denoising
operator can be used for the regularization term ®(x).

3.2. Learning spectral-spatial prior via 3DDnCNN

As discussed above, instead of using handcrafted regularizers, we
propose to train a CNN-based denoiser for (7) by directly learning
the spectral-spatial prior from hyperspectral image datasets.

A 3D denoising convolutional neural network is specifically
designed for this task. Unlike 2D convolution resulting in spectral
information distortion, 3D convolution extracts spatial feature of
neighboring pixels and spectral feature of adjacent bands simulta-
neously without reducing spectral resolution. 3D convolution also
involves fewer parameters and is more appropriate for hyperspectral
image processing due to the difficulty in capturing a large number
of hyperspectral data (see Fig. 2).



Algorithm 1 HSI deconvolution with prior learnt from 3DDnCNN.
Input: Network parameters ©, blurred observation y,
number of spectral bands N, regularization parameter A,
penalty factor p, number of iterations K.
Output: Deblurred HSI x.
Initialize x = Xg, auxiliary variable zo = Xo,
scaled dual variable ug = 0, k = 0.
while Stopping criteria are not met and £ < K do
)~(k = Zr — Uk
fori=1to N do
Xpt1,0 = (HTH 4 p1) 7 (Hyi + pXii)
end for
Xk = Xk4+1 + Uk
Zi+1 = ]‘—(ik, @)
Upt1 = Uk + Xk41 — Zk+1
k=k+1
end while

The structure of the proposed 3DDnCNN is illustrated in Fig. 1.
Let us define a 3D-block by the composition of a 3D convolution
layer (3DConv), a batch normalization (BN) layer and a Rectifier
Linear Unit (ReLU) activation function layer. Besides the input and
output layers, a 3D convolution layer (3DConv), a ReLU activa-
tion function layer, B 3D-blocks and a last 3D convolution layer
are sequentially connected to form the proposed network. Batch
normalization is also used to speed up the training process as well
as to boost the denoising performance [19]. The last convolutional
layer contains one 3D-filter while the others are composed of 32
3D-filters. The kernel size of each 3D-filter is 3x3x 3, which im-
plies that the depth of the kernel in spectral dimension and size of
the kernel in spatial dimension are 3 and 3 x 3 respectively.

The input of the proposed 3DDnCNN is the noisy hyperspectral
image Z = z + v, where Vv is the Gaussian noise. Inspired by 2D
image denoising algorithm [19], we adopt the residual learning to
predict the residual error v & v in our denoising network, then we
can achieve the estimated clean image by Z = z — ¥. For training
the network, we use the following loss function:

M
6(@) = Z ||-7:(im;e) - (im - Zm)“l ®)
m=1
where {(Zm,zm)}5_1 represents M generated noisy-clean HSI
(patch) pairs used to train the network function F parameterized
by ©. Note that ¢;-norm is used as we find it leads to better perfor-
mance than ¢>-norm in denoising.

After the 3DDnCNN is trained with massive noisy-clean HSI
pairs, it is incorporated into the ADMM-based framework as a de-
noiser, yielding Algorithm 1.

4. EXPERIMENTAL RESULTS

In this section, we validate the proposed method to show its ef-
fectiveness. We used two public hyperspectral image databases,
namely, CAVE [20] database with 32 indoor HSIs recorded under
controlled illuminations, and Harvard [21] database with 50 indoor
and outdoor HSIs captured under daylight illumination. In the CAVE
database, the images consist of 512 x 512 pixels, with 31 spectral
bands of 10 nm, covering the visible spectrum 400-700 nm. The im-
ages from the Harvard database have a spatial resolution of 1392 x
1040 pixels and 31 channels, ranging from 420 nm to 720 nm at a
wavelength interval of 10 nm. The top left 1024 x 1024 pixels were
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Fig. 3. Blurring kernels used in the experiments.
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Fig. 4. The denoising performance of 3DDnCNN with different B.

extracted in our experiments.

The following settings of blur kernels and i.i.d. white Gaussian
noise with stand deviation o were used to generate degraded images
in the experiment.

(a) 15x15 Gaussian kernel with bandwidth g, =1.6, and c=0.01.
(b) 15x15 Gaussian kernel with bandwidth o, =2.4, and 0 =0.01.
(c) 15x15 Gaussian kernel with bandwidth o, =1.6, and 0 =0.03.
(d) Circle kernel with diameter of 7, and o = 0.01.

(e) Motion kernel from [22] of size 15x 15, and o = 0.01.

(f) Square kernel with side length of 5, and ¢ = 0.01.

See Fig. 3 for these kernels.

For training and evaluating the proposed 3DDnCNN, the first 20
images of the CAVE database were used as the training set and the
others were used as the test set. In the Harvard database, the first 30
hyperspectral images were used as the training set while the others
were used as the test set. We implemented our denoising network
based on Pytorch and Adam optimizer [23] with an initial learning
rate 0.0002 and a mini-batch of 64 to minimize the loss function (8)
in 500 epochs. The weights were initialized by the method in [24]. In
every epoch of the training phase, each original hyperspectral image
was randomly cropped into patches of size 64 x 64, and each patch
was randomly flipped and rotated for data augmentation.

In our proposed method, the regularization parameter A was set
t0 9.6x 1075 and the penalty factor p was set to 0.06 except for set-
ting () A = 1.28x 1073 and p = 0.8 due to its different noise level.
The influence of the number of 3D-blocks B is examined in Fig. 4,
where the average root-mean-square error (RMSE) value based on
the test set in the CAVE database was used to evaluate the denois-
ing performance. As shown in Fig. 4, large values of B generally
leads better results. In our deconvolution experiment, we set B = 8
as a larger value by considering the computational cost and memory
demand.

Once the denoiser 3DDnCNN was trained, it was plugged into
the ADMM framework. The number of iterations K in Algorithm 1
was set to 20 which was sufficient to ensure the convergence. To
evaluate the quality of the deblurred images, four quantitative met-
rics including the root mean-square error (RMSE), peak-signal-to-
noise-ratio (PSNR), spectral angle mapper (SAM) [25] and struc-
tural similarity (SSIM) [26]. We compared the proposed method
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Fig. 5. Visual results for comparison of the methods.

Table 1. Average RMSE, PSNR, SAM, SSIM of different methods on CAVE and Harvard database in 6 blur scenarios.

Scenarios | Methods CAVE database Harvard database
RMSE PSNR SAM SSIM | RMSE PSNR SAM SSIM
HLP 3781 37427 11.19 09257 | 3.562 38.181 841 09133
(a) SSpP 4299  36.536 824 09474 | 3.687 38.657 5.06 0.9353
proposed | 2.559 41173 6.27 09602 | 2.722 41.116 4.84 0.9486
HLP 4947 35340 1098 0.9058 | 4.356 36.885 8.07 0.8903
(b) SSP 5285 34.697 849 09255 | 4431 37225 510 09110
proposed | 4.774 35961 7.77 09199 | 3.766 38.852 4.77  0.9202
HLP 7.778  30.042 2583 0.6140 | 7.729 30.515 2324 0.5947
(c) SSP 4.606 35.655 1223 09161 | 4.060 37.079 822  0.9046
proposed | 3.898 37.424 6.46 0.9395 | 3.737 38958 4.58 0.9165
HLP 4486  36.102 11.52 009116 | 4.004 37354 858 0.8992
(d) SSP 4788 35609 841 09350 | 3.992 38.085 5.08 0.9232
proposed | 3.017 39.887 6.80 0.9477 | 2987 40.500 4.82 0.9384
HLP 4312  36.183 1297 09035 | 3.891 37.248 9.88  0.8945
(e) SSP 4473 36.151 851 09427 | 3.807 38372 5.19 0.9317
proposed | 2.024  43.042 630 0.9638 | 2.306 42.258 4.77 0.9568
HLP 3933 37.054 11.77 09211 | 3.642 37928 886 0.9090
® SSP 4305 36539 833 09463 | 3.646 38.771 5.08  0.9347
proposed | 2.078 42,718 6.29 0.9669 | 2.458 41.807 4.87 0.9541
with two deconvolution methods that can be used for hyperspec- oray point
tral images, namely the algorithms with well-designed regularizers 02
in [27] and [11]. The first method (denoted by HLP), considering the © D;f ssp
spatial priors, i.e., the hyper-Laplacian priors of images. The second § 0.05 proposed
method (denoted by SSP), considering both the spatial and spectral L *Wﬂv‘l(/\"’\f
priors of hyperspectral images. 000?

The average quantitative results of these methods on the test sets 400 451:52‘;5;:;[’55” ro0
are reported in Table 1. The proposed method achieved satisfactory o2 red point 02 green point
results in various blur scenarios. For visual comparison, we take 015 HLP 018 HLP
scenario (a) for example. Fig. 5 illustrates blurred image, deblurred g 0.1 ;i:om % 0.1 Erizosed
images, ground truth of real and fake peppers and superballs (two 2 ”s A [\CJ\, £ ”i ffff A AANL
images from CAVE dataset) at the 15h and 24th bands respectively. ® 05 \AW ® 005 wa

Fig. 6 shows the spectra difference between recovered data and the
clean data (sponges from CAVE dataset) on several pixels. We ob-
serve that our proposed method exhibited better spatial and spectral
visual results.

5. CONCLUSION

This paper presented hyperspectral image deconvolution method
based on the ADMM framework. Instead of using handcraftted
priors, we designed a denoiser based on 3DDnCNN to learn the
spectral-spatial information of hyperspectral images from data, and
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-0.1
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Fig. 6. Spectral difference between restored data and clean data on
several pixels.

plugged it to ADMM based optimization. Experimental results on
two public databases demonstrated that proposed method can effec-
tively handle scenarios with various blurring setting. In the future,
we will further improve the structure of 3DDnCNN and extend the
proposed method to blind hyperspectral deconvolution.
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