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ABSTRACT
Detecting change points in streaming time series data is a long
standing problem in signal processing. A plethora of methods have
been proposed to address it, depending on the hypotheses at hand.
Non-parametric approaches are particularly interesting as they do
not make any assumption on the distribution of data or on the nature
of changes. Nevertheless, leveraging recent advances in deep learn-
ing to detect change points in time series data is still challenging.
In this paper, we propose a change point detection method using
an online approach based on neural networks to directly estimate
the density-ratio between current and reference windows of the data
stream. A variational continual learning framework is employed to
train the neural network in an online manner while retaining infor-
mation learned from past data. This leads to a statistically-principled
fully nonparametric framework to detect change points from stream-
ing data. Experimental results with synthetic and real data illustrate
the effectiveness of the proposed approach.

Index Terms— Change point detection, online, density-ratio es-
timation, neural networks, continual learning.

1. INTRODUCTION

Change point detection (CPD) consists of detecting abrupt changes
in the statistical properties of time series measurements [1]. As a
fundamental problem in statistics and signal processing, CPD has
seen major interest from the community in the past decades, and has
been applied to fields as diverse as medical condition monitoring [2],
speech recognition [3] and image analysis [4].

Numerous approaches have been proposed to perform CPD. De-
pending on whether prior information on data distributions is avail-
able, recent CPD approaches can be roughly divided into parametric
and non-parametric strategies. Parametric ones rely on model as-
sumptions describing the probability density function (PDF) of the
data before and after an abrupt change. Examples of parametric CPD
strategies include the cumulative sum (CUSUM) [5], the generalized
likelihood ratio test (GLRT) [6], and subspace identification (SI) [7].
The CUSUM algorithm [5] assumes that the parameters undergoing
changes are known and requires knowledge of the change in either
the mean or the variance. The GLRT method [6] assumes that ob-
servations are driven by a linear state-space model. By explicitly
considering a noise factor in a linear state-space model, the SI ap-
proach [7] detects changes using distances between the subspaces
spanned by two sequence windows.

Parametric CPD methods operate well when all the assumptions
on the problem at hand are met. Nevertheless, deriving a model that
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accurately describes the data is usually intractable and makes para-
metric approaches sensitive to modeling errors [8]. Non-parametric
CPD methods have been introduced to address this issue. These ap-
proaches make weaker assumptions about the data and include, for
instance, the use of empirical estimation of the cumulative data dis-
tribution, or the deviation of a kernel embedding of the data from its
mean [8]. A non-parametric strategy of particular interest is the use
of density-ratio estimation. Although the distribution of the pre- and
post-change data can be hard to estimate, only their ratio – which
can be easier to estimate – is necessary to perform CPD [9]. Several
CPD methods based on density-ratio estimation have been proposed
in the literature. Examples include the Kullback-Leibler (KL) di-
vergence based importance estimation procedure (KLIEP) [10], the
unconstrained least squares importance fitting (uLSIF) and the rela-
tive uLSIF [11].

Unlike these offline methods that detect changes in a dataset col-
lected a priori, online CPD algorithms process streaming data iter-
atively in an adaptive fashion. The method in [12] considers us-
ing the k-nearest neighbors (kNN) algorithm to tackle online CPD
by extending SI techniques in non-linear subspaces. In [13], the
moving average-based algorithm NEWMA is introduced to moni-
tor the mean of the process in a feature space. An online version
of the relative uLSIF-based method NOUGAT is designed in [14]
to detect change points by learning density-ratios with the kernel
trick. Another important branch of non-parametric online CPD is
based on virtual classifiers (VC) [15, 16]. These methods train a bi-
nary classifier with pseudo labels to learn density-ratio over past and
future data, and consider the separability of data to detect change
points. An online Bayesian approach using a latent class model for
the data whose number of classes can increase over time was pro-
posed in [17]. However, Bayesian methods can have high complex-
ity when compared to approaches such as [13, 14].

Recently, deep learning has become a popular framework for ad-
dressing a variety signal processing tasks. Several works considered
deep learning for CPD. In [18], an autoencoder is used to learn a time
invariant representation of the data which is more amenable for CPD.
Neural networks are used for density-ratio estimation in [19]. How-
ever, both approaches do not operate online. Another method based
on the reconstruction error of an autoencoder is proposed in [20]
with real-time preprocessing. However, it relies on strong assump-
tions about the nature of the changes. A related approach using
an autoencoder based on recurrent neural networks was proposed
in [21]. Current deep learning and density-ratio learning CPD al-
gorithms are still limited in combining flexibility with the ability
of retaining knowledge from past data, while maintaining a low-
complexity. Continual learning [22, 23] has the ability to adapt to
recent data while at the same time retaining past knowledge. This
made it successful in various online learning tasks.

In this paper, a new online CPD strategy based on neural density-



ratio estimation and continual learning is proposed. First, density-
ratio estimation is represented as a binary classification problem over
two sliding (reference and test) data windows. This allows us to
leverage state-of-the-art probabilistic classification neural networks
to perform CPD in a non-parametric manner. Moreover, to obtain an
adaptive detection strategy that leverages past information while op-
erating online, a variational continual learning objective is devised to
train the neural network classifier in a Bayesian framework. Specif-
ically, the statistical distribution of the network parameters at each
time step is used as a prior for the next classification objective in a
regularization-based framework. This allows the trade-off between
temporal smoothness and fast adaptation to be controlled using a
single regularization parameter. Experimental results with both syn-
thetic and real data show the effectiveness of the proposed strategy.

2. PROBLEM FORMULATION

Let us consider a time series of d-dimensional vector-valued data
{xt}t∈IN, with xt ∈ IRd. We assume that there exists a time index
tr ∈ IN with an abrupt change in the statistical distribution of xt,
that is:

t < tr : xt ∼ p(x) , t ≥ tr : xt ∼ q(x) , (1)

where p(x) and q(x), which are assumed to be different, denote
the PDFs of the data before and after tr . The latter is the so-called
change point. To make the presentation clearer, without loss of gen-
erality, note that we consider in (1) the case of a single change point.

The CPD problem consists of estimating the change point t̂r
that is as close as possible to the true change point tr . In this work,
we consider a more general version of this problem, in which {xt}
might contain multiple change points, and xt is a streaming signal
that is observed sequentially over time. We address the requirement
that CPs must be detected online, i.e., we need to decide whether
each time instant t ∈ IN is a change point based only on past data
{xt′}t′≤t. This leads to two objectives when designing an online
CPD algorithm: minimizing the probability of a false alarm (of flag-
ging t ̸= tr as a change point), and minimizing the detection delay,
i.e., t̂r − tr for t̂r being the first detection after tr . Note that our
method is built upon multi-dimensional streaming signals, but it can
also address the case of one-dimensional time-series where xt is a
scalar (i.e., d = 1). Moreover, we focus on non-parametric strate-
gies, in which no parametric form is assumed for the PDFs p(x) and
q(x).

3. THE PROPOSED METHOD

The basic idea of the proposed CPD strategy consists of estimating
change points by means of evaluating the density-ratio between the
PDFs of the data over a reference and a test window, given by:

r(xt) =
ptest(xt)

pref(xt)
, (2)

with ptest(x) the data PDF over the test window with N samples:

Xt =
{
xt−N+1, . . . ,xt−1,xt

}
, (3)

and pref(x) the data PDF over the reference window with N ′ sam-
ples:

X ′
t =

{
xt−N−N′+1, . . . ,xt−N−1,xt−N

}
. (4)

Our objective is to estimate the density-ratio r(xt), at each time t ∈
IN, given only the data xt observed sequentially over windows Xt

and X ′
t . To this end, we will consider two steps: first, a probabilistic

classification-based approach is introduced to estimate the density-
ratio; afterwards, we propose to use a Bayesian continual learning
strategy in order to learn the classifier online.

3.1. Neural Online Density-ratio Estimator

Without additional knowledge about ptest(xt) and pref(xt), com-
puting these PDFs can be intractable, and the non-parametric esti-
mation of r(xt) becomes more desirable. Within this context, ker-
nel [14] or deep learning [19] strategies have been proposed to es-
timate density-ratio with the design of specific learning objectives.
An important property of the density-ratio is that it can be related to
probabilistic binary classification, allowing us to leverage state-of-
the-art classification methods to address this problem [24]. First, let
us annotate the samples in data sets X ′

t and Xt with pseudo labels 0
and 1, respectively. This way, considering the labels to be a random
variable yt ∈ {0, 1}, we can express the distributions ptest(xt) and
pref(xt) in the form of a single conditional PDF:

ptest(xt) = p(xt|yt = 1) , (5)
pref(xt) = p(xt|yt = 0) . (6)

Using Bayes’ rule and the above definition and assuming the two
classes with equal a priori marginal class probabilities, equation (2)
can be written as:

r(xt) =
p(xt|yt = 1)

p(xt|yt = 0)
=

p(yt = 1|xt)

1− p(yt = 1|xt)
. (7)

In this way, the density-ratio between ptest(xt) and pref(xt) can be
recovered by the optimal binary classifier p(yt|xt) that distinguishes
between samples from these two distributions.

By concatenating the two data sets corresponding to the refer-
ence and test windows as:

Dt =
{
(xt, yt = 0) : xt ∈ X ′

t

}⋃{
(xt, yt = 1) : xt ∈ Xt

}
,

which leads the CPD problem to be formulated as learning a binary
classifier at each time t ∈ IN based on the training data Dt, also
called as virtual classifier [15,16]. We denote this learnable classifier
by p(yt|xt,ϕ), where ϕ denotes a vector containing its parameters.
It has been shown in [24] that a wide range of losses used in binary
classification are suitable to perform density-ratio estimation.

It is popular to parameterize this classifier as p(yt = 1|xt) =
σ(fϕ(xt)), where σ(·) is the logistic sigmoid function given by
σ(x) = ex/(ex +1) and fϕ : IRd 7→ IR is a neural network param-
eterized by ϕ. When the classifier is trained using maximum like-
lihood estimation, the optimal value for fϕ is log r(xt) [25]. This
yields the proposed neural online density-ratio estimator (NODE):

rϕ(xt) = exp
(
fϕ(xt)

)
, (8)

where the subscript ϕ emphasizes that rϕ(xt) depends on the
learned classifier. CPD is then performed by comparing the test
statistic | 1

N

∑
x∈Xt

(rϕ(x)− 1)| to a given threshold ξ ∈ IR+. The
average over Xt is used to obtain more stable detections.

A crucial consideration for the proper estimation of p(yt|xt,ϕ)
is that this classifier should avoid overfitting given the limited data
set Dt with N+N ′ samples. This is particularly important since the
window lengths directly impact the performance of the algorithm:
they need to be small to limit the detection delay, but large in order
to supply enough training data. This issue will be alleviated in the
following by considering an online continual learning strategy for
NODE, in which information from previous windows is leveraged
when learning the current classifier.



3.2. Continual learning strategy

As discussed above, we train a neural classifier and update its param-
eters ϕ using samples in Dt at each time instant t. Since the over-
lapping part in training datasets at neighboring time instants, e.g.,
Dt−1 and Dt, is relatively large, it is beneficial to retain the knowl-
edge acquired from D1:t−1 when training the classifier on Dt. This
is particularly important to benefit from past information and avoid
overfitting when the window length is small. To iteratively learn
the classifier while retaining the knowledge acquired from past iter-
ations, we investigate a variational continual learning (VCL) strat-
egy [23] in our CPD algorithm.

Given an independent input x, let us consider that the classifier
returns a probability distribution p(y|x,ϕ) of its label y, given its
parameters ϕ. Note that the classifier parameters are assumed to be
random variables as this allows one to account for their uncertainty,
which can be important when training with small amounts of data.
In the continual learning setting, we aim to compute the distribution
of the parameters at time t, denoted ϕt, given the data set Dt. This
is computed using Bayes’ rule:

p(ϕt|Dt) ∝ p(Dt|ϕt)p(ϕt) , (9)

where p(ϕt) is a properly selected prior for the parameters which
captures the information from the past data. To compute p(ϕt|Dt)
recursively, as in a Bayesian filtering framework, the prior p(ϕt)
is selected as the posterior distribution of the parameters computed
at the previous iteration, p(ϕt−1|Dt−1). However, the posterior
distribution is intractable in general and needs to be approximated.
VCL [23] approximates the posterior distribution by another distri-
bution q belonging to a tractable family Q. This is performed by
finding the distribution q ∈ Q which minimizes the KL divergence
to the true posterior:

qt(ϕt) = argmin
q∈Q

KL
(
q(ϕ)

∥∥∥ 1

Zt
p(Dt|ϕ)qt−1(ϕ)

)
, (10)

where qt−1(ϕ) is the approximate parameters posterior that was
computed at time t − 1, and Zt is a normalizing constant (which
will not be required in the optimization process). The zeroth ap-
proximated posterior q0(ϕ) is defined as the prior distribution of the
parameters p(ϕ). Training the classifier using the variational infer-
ence in (10) is equivalent to maximizing the evidence lower bound
to the data log-likelihood log p(Dt), which leads to the following
cost function:

Lt(qt(ϕ)) =

N+N′−1∑
n=0

Eϕ∼qt(ϕ)

{
log p(yt−n|ϕ,xt−n)

}
− λKL

(
qt(ϕ)||qt−1(ϕ)

)
. (11)

Here we introduce a hyperparameter λ to trade-off between stabil-
ity of the continual learning strategy, and its ability to adapt in the
presence of a change point.

We consider the variational family Q as Gaussian distributions
with diagonal covariance matrices (i.e., a mean field assumption),
which make the learning process more efficient since the KL diver-
gence in (11) can be computed in closed form. p(y|ϕ,x) is mod-
eled as a Bernoulli distribution. The optimization of Lt(qt(ϕ)) is
performed by using the Adam [26] gradient-based optimizer, where
the reparametrization trick [27] was used to tackle the expectation
with respect to qt(ϕ). At each time instant, (11) is maximized for
M epochs, with the parameters of the distribution qt(ϕ) initialized
with those of qt−1(ϕ), obtained as the solution at t − 1 (i.e., warm
start). The proposed CPD procedure is summarized in Algorithm 1.

Algorithm 1: CPD with NODE
Input: {xt}, parameter λ, number of epochs M , threshold ξ.

1 Initialization: optimize (11) with λ = 0 for t = 1 ;
2 for t = 2, 3, . . . do
3 Update data windows to build the data set Dt ;
4 Optimize cost function (11) for M epochs ;
5 Compute the density-ratio using (8) ;
6 if | 1

N

∑
x∈Xt

(rϕ(x)− 1)| > ξ then
7 Flag t as a change point;
8 end
9 end
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Fig. 1. Mean of the test statistic (± standard deviation) for all com-
pared algorithms. The change point tr is located at the yellow line
and tr +N at the red line.

4. EXPERIMENTS

In this section, we validate the proposed online CPD method with
NODE and compare it with three baselines, namely, the kNN [12],
MA [13, 14] and NOUGAT [14]. For all experiments, fϕ was a
fully connected network with three hidden layers, where each layer
contained 16 units (32 units for real data) with Tanh activations. The
reference and test window lengths were both set to N = N ′ = 64
for all algorithms. The network was trained for 20 epochs during
initialization, then for M = 1 epoch for t > 1. We set λ = 20 for
simulated data and λ = 5 for real data. The codes are made available
at www.github.com/xiuheng-wang/NODE_release.

4.1. Monte Carlo validation

The simulated signals xt were sampled from mixtures of k d-
dimensional Gaussian distributions Nd(mq, q

−1Cq) with q =
1, . . . , d. The weights αq of the mixture model were generated
from a flat Dirichlet distribution with concentration coefficient β.
The means mq and the covariance matrix Cq were sampled from
Nd(0, I) and a Wishart distribution with the scaling matrix I and
d + 2 degrees of freedom. We generated 700 samples and put a
change point at tr = 400. We set d = 6, k = 3, β = 5, and all
parameters {mq, αq,Cq} were resampled at time t = tr .

Fig. 1 shows the mean ± standard deviation of the test statistic

www.github.com/xiuheng-wang/NODE_release
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Fig. 2. Credit card fraud detection. The change point tr is located at
the yellow line and tr +N at the red line.
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Fig. 3. ROC curves for all compared algorithms. The closer a ROC
curve is to the upper left corner, the better the algorithm performs.

of all compared algorithms for 104 Monte Carlo runs. Comparing
the ratio between the test statistic at the peak at tr + N and be-
fore tr , NODE achieved the best performance compared to the other
methods. This can be seen more clearly in the Receiver Operating
Characteristic (ROC) curves computed based on the multiple Monte
Carlo runs and shown in Fig. 3, where NODE achieves an improve-
ment of detection rate for false alarm rates from 0 to 0.4.

4.2. Credit card fraud detection

The real data in the credit card fraud detection data set is composed
of transactions made in September 2013 by European cardholders1.
The raw data were preprocessed by applying PCA, and the first five
components (d = 5) were considered to obtain streaming signals
xt. This data set contains 492 frauds out of 284,807 transactions.
We inserted the 492 frauds after the first 1000 genuine transactions
to create two change points at tr = 1000 and tr = 1492.

Fig. 2 illustrates the detection statistics of kNN, MA, NOUGAT
and NODE. The test statistic values for all algorithms were signif-
icantly larger in the vicinity of tr + N compared to intervals not

1www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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Fig. 4. Text language detection. The change point tr is located at
the yellow line and tr +N at the red line.

in the vicinity of the change points. However, the test statistics of
kNN and MA showed large values between the two change points.
NOUGAT performed better than MA and kNN, however, NODE ob-
tained the best performance, with test statistic values that were only
non-negligible after the change points, which translates into a very
low false alarm rate.

4.3. Text language detection

The real data set for text language detection was created from a data
set containing text from 17 different languages2. Raw texts were first
cleaned by removing symbols and numbers and then represented via
a linear embedding of dimensionality d = 20 using word2vec.
Time series xt was formed by concatenating the representations of
1014 French, 594 Malayalam, and 526 Arabic texts.

The results are provided in Fig 4. The test statistic of kNN
produced very large values in the absence of change points when
compared to the other algorithms, what led to a large false alarm
rate. MA, NOUGAT and NODE provided comparable results. How-
ever, NODE’s test statistic was more stable outside of the vicinity of
change points.

The execution times of NODE were about an order of magnitude
larger than the other methods in all experiments. However, NODE
was implemented in a different computation platform (Python) than
the baselines (Julia), which reduces the appropriateness of compar-
ing their execution times. A more in-depth study of the complexity
of the proposed method and the development of more efficient solu-
tions will be the subject of future work.

5. CONCLUSION

In this paper, we introduced a novel strategy for online CPD that
leverages the powerful learning ability of neural networks to esti-
mate density-ratio in a non-parametric manner. A continual learning
framework was exploited to devise an adaptive detection algorithm
that retains past information. Experiments illustrated the superiority
of the proposed strategy compared to state-of-the-art methods.

2www.kaggle.com/datasets/basilb2s/language-detection
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