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ABSTRACT

Signal processing methods over graphs and networks have re-
cently been proposed to detect change points occurring in lo-
calized communities of nodes. Nevertheless, all these meth-
ods are mostly limited to time series data in Euclidean spaces.
In this paper, we devise a distributed change point detection
method for streaming manifold-valued signals over graphs.
This framework combines a local test statistic at each node to
account for the geometry of the data on a Riemannian mani-
fold, with a fully distributed graph filter that incorporates in-
formation on network topology.

Index Terms— Graph signal processing, distributed,
change point detection, Riemannian manifold, graph filtering

1. INTRODUCTION

Change point detection (CPD) aims to detect abrupt changes
in the distribution of monitored data and is recognized as a
central task in streaming data analysis. Recently, one trend
is to detect anomalous events in time series data measured
over the nodes of a network [1-3]. This problem is of signif-
icant interest with wide-ranging applications in the fields of
physics, biology, and finance to cite a few.

The change points in these problems often occur in groups
of highly connected nodes (i.e., communities) of networks,
represented as graphs. Graph signal processing tools, includ-
ing spectral analysis [4, 5] and filtering [6-9], are indicated
to combine such graph topology information with measure-
ments collected at each node. In [1], the authors introduce
the Graph Fourier Scan Statistic (GFSS) and a low-pass fil-
ter based on graph Fourier transform to detect anomalies over
graph signals. The work in [2] proposes an online CPD algo-
rithm with a fully distributed and adaptive GFSS to monitor
for change points in large-scale networks. This algorithm was
applied for CPD in multi-channel image sequences in [10].
An online and distributed strategy based on likelihood ratio
estimation with kernel machinery is also described in [3] to
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detect change points over graphs with few assumptions on the
data distribution.

All the distributed CPD frameworks listed above are lim-
ited to real- or vector-valued time series in Euclidean spaces.
To the best of our knowledge, there is no generalization of
CPD techniques over graphs where the streaming data col-
lected at each node belongs to a Riemannian manifold. A
representative application is the detection of change points in
videos with a sequence of spatially localized covariance de-
scriptors [11]. In this application, the changes usually affect
multiple related regions in the image, however, this informa-
tion is not taken into account by algorithms that process each
region separately. One possibility to leverage this information
is to design a graph that describes the relationship between re-
gions, and then perform the detection of change points coop-
eratively. To devise algorithms for manifold-valued data, it is
important to take the geometry of the data space into account
by exploiting, e.g., an appropriate Riemannian metric [12,13].

This paper introduces a distributed framework for detect-
ing change points on manifold-valued signals collected over
a network. The proposed method is built upon a test statistic
derived for streaming data on a Riemannian manifold which
accounts for the geometry of the data, and a fully distributed
graph filter that exploits the network topology information
to enhance the detection of anomalies localized in unknown
communities of nodes. Simulation results show that taking
manifold geometry and graph topology into account can sig-
nificantly improve the detection performance.

2. BACKGROUND

We shall now introduce some basic concepts of Riemannian
geometry [13], taking as an example the manifold of d x d
symmetric positive definite (SPD) matrices, denoted by Sj+.
A Riemannian manifold (M, g) is defined by a constrained
set M equipped with a Riemannian metric g,(-,-) : Ty M x
T,M — R defined for each z € M, where T, M is called
the tangent space of M at x. The geodesic distance is de-
fined as daq(+, ) : M x M — R and satisfies all conditions
to be a metric. Let f : M — R be a smooth real-valued



function. The Riemannian gradient of f at x € M is de-
fined as the unique tangent vector V f(z) € T, M satisfying
%|t=0f(expx(w)) =(Vf(x),v), forall v € T, M. The ex-
ponential map w = exp, (v) defines the point w of M located
on the unique geodesic 7, (t) such that v, (0) = z, 7,(0) = v
and 7, (1) = w. For instance, the geodesic distance between
two SPD matrices 31 and 35 can be computed [12] as:

dsi(S1,5) = | log(8; P 208, 9)] . (1)

with | | 7 the Frobenius norm. The Riemannian gradient at 3
of the loss di** (X, 3;) can be obtained by applying:
d

1
35 (G" +G)Z
to its Euclidean gradient G. This gives us:
H(Z, %) =2log(EX; 12 Q)

Let £ € TsS; . Aretraction Ry, g++ : T5S; ™ — 87T is:
94

Ry s++(6) =S+ €+ %nglg. 3)

This retraction is a second-order approximation of the expo-
nential mapping on Sj““.

3. PROBLEM FORMULATION

We consider an undirected graph G = {N, £} with N vertices
in N = {1,...,N} and M edges in £ = N x N such that
(i,7) € & iff nodes ¢ and j are connected. With the graph G
is associated a N x N weighted adjacency matrix W. Each
entry W; ; > 01is the connection strength between nodes 7 and
j, with non-zero value iff (4, j) € £. A community C = N in
G is a subset of nodes that are densely connected.

At each time instant ¢ € IN, we observe a signal over the
graph X; = {z;(n)})_,, where x;(n) € M denotes the mea-
surement collected at node n, that lies on a Riemannian man-
ifold (M, g). In this paper, the objective is to detect an abrupt
change in the graph signal X; that might occur at an unknown
time ¢.., called the change point. In particular, we assume that
the changes occur in an unknown community C* of G, which
means that:

t<t,: xi(n) ~ Py,
' “)
t=t.: x(n) ~ Py,
with
Vn € C*, PO,n #* Pl,n>
(5)

VTL¢C*, PO,n :Pl,n~

where P ,, and P, ,, denote probability measures on M that
represent the distribution of the signal x;(n) before and af-
ter the change point ¢,. For ease of notation, (4) considers
only a single change point. However, the algorithm presented
hereafter can handle multiple change points.

4. METHODOLOGY

Distributed CPD strategies [1-3] initially designed to han-
dle time series signals in an Euclidean space cannot handle
streaming data that lies on a manifold. In this work, we aim to
design a new framework to detect change points in streaming
manifold-valued signals over graphs. First, we consider an
online CPD strategy on Riemannian manifolds to take the data
geometry into account. Second, we leverage the graph topol-
ogy by graph-filtering test statistics computed at each node,
without compromising the manifold interpretation of the sig-
nals. Finally, the centralized graph filter is implemented in a
fully distributed way, to provide an efficient CPD method for
large-scale networks.

4.1. CPD in streaming manifold-valued signals

Some recent algorithms have been investigated for detecting
change points in streaming manifold-valued data. For in-
stance, an online and parametric CPD algorithm in [14] was
specifically designed for the compound Gaussian distribution.
An offline and non-parametric technique can be found in [15].
In this paper, we consider an online and non-parametric algo-
rithm proposed in [11], which detects change points by moni-
toring for abrupt changes in the so-called Karcher means [16]
of the streaming data. Consider a random signal x in M dis-
tributed according to P. Its Karcher mean is defined as:

m* = argmin {f(m) = de\/t (m, x) dP(a:)} . (6)
meM
The algorithm in [11] allows us to detect change points by
comparing two Karcher means estimated using two stochastic
Riemannian optimization methods, one rapidly approaching
the information of new data, and another steadily progress-
ing to emphasize a long-term trend. This method can be ap-
plied to detect change points in the distribution of x;(n) at
each node n by estimating its Karcher mean. Specifically,
for each node n, using two Riemannian stochastic gradient
descent (SGD) algorithms [17] with two distinct step sizes
0 < A < A, two Karcher means are estimated recursively as:

mx i (n) = R, ,_ () (— AH (M —1(n),2,(n))), (7)
mp(n) = RmAkl(n)( - AH(mA_’t_l(n),act(n))) , (8)

where R, is a retraction map at m, and H(m, x) denotes
the Riemannian gradient of the loss function f(m). The con-
vergence rates of (7) and (8) are directly affected by A and A.
Constraint A < A implies that m ;(n) is more adaptive to
new data while m ,(n) has a longer memory.

By assessing the disparity between m +(n) and ma ¢(n)
through the geodesic distance on M, an adaptive CPD statis-
tic d¢(n) for each node n can be computed as:

di(n) = dm (mM(n), mA,t(n)) . 9)



Algorithm 1 CPD in streaming manifold-valued signals

Input: {x:(n)}A_,, step sizes A, A, threshold &.
Initialize m o(n) = ma o(n) = xo(n)
fort =1,2,3,...do
forn=1,...,N do
Update my . (n) and ma ¢ (n) using (7) and (8)
Compute d¢(n) using (9)
end for
if3n e N:di(n) > £ then
Flag ¢ as a change point
end if
end for

CPD at each node can then be performed by comparing d;(n)
to a threshold £. The corresponding CPD procedure on mani-
folds is summarized in Algorithm 1.

4.2. Community CPD over graphs

Consider d; = [d¢(1),...,d;(N)]". The CPD statistic com-
puted in (1) at each node does not take into account the graph
topology. To improve the localization of the communities that
might contain a change point, we consider the graph filter g
introduced in [1] for computing the GFSS. The GFSS aims to
test if a graph signal with scalar measurements at each node is
zero-mean against the hypothesis that there is a community of
well-connected nodes where signals have a mean that differs
from zero. We propose to apply the GFSS to the node-level
test statistics d; defined in (9) rather than original signals x;
to avoid loss of the manifold interpretation of problem (4).
Let us denote the normalized graph Laplacian of G by L.
Let u, forn =1,..., N be the set of orthonormal eigenvec-
tors of L with p,, being the associated eigenvalues. Given the
node-level test statistics d;, the GFSS is defined as:

tarss(di) = [gq, |2, (10)
N

Ga, = Y W (i) (g di)u, (11
n=2

where g4, is the graph-filtered statistics, and /*(u) is the fre-
quency response of the filter defined as [1]:

h*(u)—min{l,\/Z}, 00, (12)

where v > 0 being a tuning parameter.

To get more insight into the filtering procedure in (11), let
us recall the role of the eigenvectors w,, of the graph Lapla-
cian matrix L in spectral clustering [4,5]. Consider the ideal
case of a graph with 1 < k£ < N disconnected clusters of
densely connected nodes. We denote by C,, the set of nodes in
cluster n, withm = 1,--- | k. Each u,, is proportional to the
indicator function of C,,, and u,! d; is therefore proportional
to the sum of the d;(n)’s in C,,. This means that (u, d;)u,,

Algorithm 2 Distributed CPD in streaming manifold-valued
signals over graphs
Input: {X}}, step sizes A, A, threshold &
Initializey, , =0
fort = 172;3,...do
Vn e N, compute d;(n) as in Algorithm 1
Setd; = [di(1),...,d:(N)|T
for{=1,...,K do
Yoo = ¢€Lyz,t—1 + @ed;
9a, = Sees Yo T cdy
end for
ifineN: g4 (n) > £ then
Flag ¢ as a change point
end if
end for

in (11) assigns the average value of the d;(n)’s in C,, to each
node in C,,. As the number of communities & is unknown, the
filter response in (12) is designed to penalize large numbers
of clusters in (11). This assumption is also a cornerstone of
spectral clustering methods [4, 5].

4.3. Distributed implementation

The filtering operation as defined in (11) requires the eigen-
decomposition of the normalized graph Laplacian matrix L.
This is computationally expensive and hence cannot be scaled
to large networks. A strategy to make our community CPD al-
gorithm scalable is to substitute the filter in (11)—(12) with a
distributed filter that can be implemented locally at each graph
vertex [6,7]. In contrast to these finite impulse response fil-
ters, an autoregressive moving average (ARMA) graph filter
has been proposed in [8, 9]. This filter recursively aggregates
signals in the neighborhood of each node, which therefore re-
quires low computation and memory costs.

In the context of online community CPD, we propose to
apply the parallel ARMA g graph filter [9], an approximation
of the GFSS filter g defined in (11), to the streaming statistics
d; in (9), which leads to:

Yor =Yelyp, o+ @edi, yp 1 =0, V0=1...K, (13)

K
Ga, = D, Yo, +cdy. (14)
=1

The operation Ly, ,_; is a graph-shift which is performed
locally at each node n by linearly combining the statistics
as follows: ZkeNp Ly 1 Yo,1—1,k» Where ./\/p is the neighbor-
hood of node p, including p itself, y, ;1 i is the k-th entry
of y, ;4 and Ly . the (p, k)-th entry of L. This operation
plays a central role in the fully distributed graph-filtering pro-
cedure of streaming statistics d; as it only involves the values
of the neighboring nodes over graphs. Note that there exists
a series of appropriate parameters ¢ and {(¢g, p¢)}e=1.. K SO
that h(u) closely approximates h* (1) in (12). The fully dis-
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Fig. 1. Graph topology with colored communities C;.
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tributed CPD procedure for streaming manifold-valued sig-
nals over graphs is described in Algorithm 2.

5. SIMULATIONS

We shall now illustrate the performance of the proposed ap-
proach using graph signals x;(n) over manifold S] *. The
topology of the graph G used for simulations is illustrated in
Fig. 1. It contains p = 250 nodes and m = 2508 edges, and
8 communities. These communities C; have been unfolded
using [18] and colored for visualization. We generated &} as
in (4) with a change point in community C*. Its nodes are
colored in orange in Fig. 1. The synthetic matrices ¥; € S;
with d = 6 were sampled from a Wishart distribution with
the scaling matrix V' and degrees of freedom d. We gener-
ated 800 samples and inserted the change point at ¢, = 500
in (4) where we reset V.

With {2, }+en lying on S " and the metric defined in (1),
the Karcher means were estimated by minimizing

[(2) = B, pm {|log(Z; 228, D)2}, (15)

using the Riemannian SGD algorithms in (7) and (8) with the
stochastic gradient (2) and the retraction (3). Step sizes were
setto A = 0.01 and A = 0.02 and used to compute the online
statistic in (9). Parameter v of the GFSS filter (12) was set to
0.03 and K in the ARMA i filter to 4. The practical computa-
tion problems of parameters ¢ and (¢, @) for ¢ = 1,..., K
are discussed in [2].

To compare the detection performance of these algo-
rithms, Monte Carlo simulations were performed to estimate
the mean detection delay, average run length, and false alarm
rate for daGFSS, d; and g4, . Considering g4, for illustration
purposes, these metrics are defined as follows:

Tmaa = inf{t —t, : g4, (n) > &[neC*},  (16)
Tan = inf{t : gg,(n) > &|n ¢ C*}, (17
Pgy = P(gg4,(n) > &[t > t,,n ¢ C*). (18)

To illustrate the advantage of exploiting both manifold ge-
ometry and graph topology, we compared our Algorithm 2 to
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Fig. 2. Average run lengths versus mean detection delays for
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Fig. 3. Mean detection delays versus false alarm rates for all
compared algorithms. Algorithm 1: d;, Algorithm 2: g .

two baselines. The first baseline is daGFSS [2], originally de-
signed for Euclidean data. We applied daGFSS to the vector-
ization of the lower triangular and diagonal parts of 33;. The
second baseline is the Karcher means-based CPD method on
manifolds detailed in Algorithm 1, performed node-by-node
without cooperation.

Fig. 2 and Fig. 3 show the mean detection delays versus
average run lengths and false alarm rates, respectively, of all
detectors considered in this paper. As expected, Algorithm 2
clearly benefits from d; compared to daGFSS, and g in Al-
gorithm 1. Fig. 4 illustrates the test statistics g4, , normalized
here only for illustration convenience. This figure shows the
ability of the proposed algorithm to localize the community
where change points occur.

6. CONCLUSION

This paper introduces a distributed algorithm for detecting
change points in streaming manifold-valued signals within an
unknown community of a graph. The algorithm is online,
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non-parametric, and fully distributed across the graph nodes.
Simulation results validate its effectiveness in leveraging data
manifold geometry and graph topology for improved perfor-
mance.
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