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ABSTRACT

Distributed adaptation and learning recently gained con-
siderable attention in solving optimization problems with
streaming data collected by multiple agents over a graph.
This work focuses on such problems where the solutions lie
on a Riemannian manifold. This research topic is of particu-
lar interest for many applications, e.g., principal component
analysis (PCA). Although several incremental and consensus
algorithms have been proposed, there is a lack of methods
designed for general Riemannian manifolds with efficient
diffusion strategies. In this paper, we devise two Rieman-
nian diffusion adaptation strategies, namely, adaptation-then-
combination (ATC) and combination-then-adaptation (CTA),
for decentralized Riemannian optimization over graphs. In
the adaptation step, a Riemannian stochastic gradient de-
scent method (SGD) is used to estimate the local solution at
each node. In the combination step, the local estimates at
the different nodes are combined by computing the weighted
Fréchet mean over the neighborhood of each node. We apply
our algorithms to online distributed PCA and compare them
to both non-cooperative and centralized solutions.

Index Terms— Diffusion strategy, Riemannian mani-
folds, distributed optimization, multi-agent system, online.

1. INTRODUCTION

Distributed adaptation and learning aims to solve global,
stochastic optimization problems by networked agents through
local interactions and in the absence of prior knowledge on
the probability distributions of measured data [1]. In this
work, we consider a collection of K agents over a graph G.
At each time instant t, each agent k observes one independent
realization xk,t of a random streaming data xk ∈ Rn. In
the decentralized setting, this work deals with the multi-agent
optimization problem over a Riemannian manifold M:

w∗ = arg min
w∈M

F (w) , (1)
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where F (w) ≜
∑K

k=1 fk(w) is a global cost function for the
network with fk : M → R a local risk function defined for
each agent by:

fk(w) = Exk

{
q(w;xk)

}
, (2)

in terms of some loss function q. The expectation is computed
over the unknown distribution of the data xk, which makes it
necessary to use a stochastic approximation based on the set
of independent realizations xk,t, observed sequentially over
time. A wide range of applications in machine learning and
signal processing can be written in the form of (1), including
dictionary learning, PCA, low-rank matrix completion [2].

Distributed adaptation and learning in Euclidean spaces
has been extensively studied, including incremental [3], con-
sensus [4] and diffusion [5, 6] strategies. In particular, diffu-
sion strategies have been demonstrated in [7, 8] to offer im-
proved performance and stability guarantees under constant
step-size learning and adaptive scenarios, with extensions to
constrained [9], multi-task [10, 11], and non-convex [12] en-
vironments. Nevertheless, all these decentralized algorithms
operate in Euclidean spaces and may fail when dealing with
problem (1) defined on M. For a special case of M, one may
convert the constraint of M into a cost function in the Eu-
clidean space and solve (1) in a constrained setting [9]. How-
ever, a more general and natural way is to address problem (1)
by developing unconstrained optimization on M [2].

To solve (1), the incremental and consensus strategies
have been extended to distributed optimization on specific
manifolds, including the unit sphere [13] and Stiefel mani-
folds [14, 15]. An augmented Lagrangian method [16] was
also designed for the Stiefel manifold. However, the diffu-
sion strategy has not been investigated on manifolds though
it has been proved with superior properties in Euclidean
space [7, 8]. Recently, another distributed method [17] con-
sidered a graph filter to process statistics in [18] for streaming
data on general manifolds, but it was only designed for change
point detection. Decentralized optimization on manifolds was
also studied in [19] for the natural gradient descent.

In this work, we introduce two general decentralized Rie-
mannian adaptation and learning methods: the Riemannian
ATC and CTA diffusion strategies. Both consist of a gen-
eralization of Euclidean ATC and CTA diffusion adaptation



strategies to Riemannian manifolds. Specifically, we employ
Riemannian SGD to infer a local solution at each individ-
ual node in the adaptation step. In the combination step,
we merge the local estimates from various nodes by calcu-
lating the weighted Fréchet mean within the neighborhood of
each node. Finally, we consider an application for online dis-
tributed PCA to demonstrate the effectiveness of our strate-
gies on both synthetic and real data.

2. BACKGROUND

In this section, we introduce some basic concepts of Rieman-
nian geometry [2], taking the Grassmann manifold as an ex-
ample. This example is motivated by the experiments related
to online distributed PCA proposed in Section 5.

A Riemannian manifold (M, g) is defined by a con-
strained set M equipped with a Riemannian metric gx(· , ·) :
TxM × TxM → R, defined for each x ∈ M, where TxM
is called the tangent space of M at x. The geodesic dis-
tance is defined as dM(· , ·) : M × M → R and sat-
isfies all conditions to be a metric. The exponential map
w = expx(v) defines the point w of M located on the
unique geodesic γv(t) such that γv(0) = x, γ′

v(0) = v
and γv(1) = w. A retraction Rx : TxM → M is a
second-order approximation to the exponential map, satisfy-
ing dM(Rx(tv), expx(tv)) = O(t3). Let f : M → R be a
smooth function. The Riemannian gradient of f at x ∈ M is
defined as the unique tangent vector ∇f(x) ∈ TxM satisfy-
ing d

dt

∣∣
t=0

f(expx(tv)) = ⟨∇f(x), v⟩x for all v ∈ TxM.
The Grassmann manifold Gp

n, a set of p-dimensional
linear subspaces of Rn, can be regarded as a smooth quo-
tient manifold of the Stiefel manifold Sp

n = {U ∈ Rn×p :
UTU = Ip}, i.e., Gp

n = Sp
n/Op = {π(U) : U ∈ Sp

n} where
Op = {U ∈ Rp×p : UTU = Ip} is the orthogonal group
and π : Sp

n → Gp
n is the map π(U) = {UO : O ∈ Op}.

The geodesic distance between two subspaces π(U1) and
π(U2) of Gp

n, spanned by orthonormal matrices U1 and U2,
is defined as follows [20]:

dGp
n
(U1,U2) = ∥ cos−1(θ)∥2 , (3)

where θ ∈ Rp contains the singular values ofUT
1 U2, namely,

it is related to its singular value decomposition (SVD) as
UT

1 U2 = V T
1 diag(θ)V2. Define f̄ : Sp

n → R, we have
f(π(U)) = f̄(U) for all π(U) ∈ Gp

n. The Riemannian
gradient ∇f at π(U) ∈ Gp

n is given by:

∇f(π(U)) = ∇f̄(U) = P
Gp
n

U (G) , (4)

with P Gp
n

U (G) = (I − UUT )G, where G ∈ Rn×p is the
Euclidean gradient of f̄ at U . Let ξ ∈ Tπ(U)Gp

n, and let
XΣY = U+ξ be the thin SVD ofU+ξ ∈ Rn×p. A numer-
ically stable second-order retraction Rπ(U) : Tπ(U)Gp

n → Gp
n

on Gp
n is given by [2]

Rπ(U)(ξ) = π
(
XY T

)
. (5)

3. RIEMANNIAN CENTRALIZED SOLUTION

Unlike the Euclidean distributed setting, problem (1) is de-
fined on M. Thus, we consider directly using Riemannian op-
timization tools. To begin with, let us consider the centralized
setting where, given a collection of dataXt = {xk,t}Kk=1 that
are realizations of some random variableX = {xk}Kk=1, one
aims to minimize the global cost function in (1) on M with a
Riemannian SGD algorithm [21] and a step size Λ > 0, say,

wt = Rwt−1

(
− ΛH(wt−1,Xt−1)

)
, (6)

wherewt ∈ M is the solution at time instant t, and H(w,X)
denotes a stochastic approximation of the Riemannian gradi-
ent of the loss function satisfying:

EX
{
H(w,X)

}
=

∫
H(m,X)dP (X) = ∇F (w) .

Note that algorithm (6) is not distributed and requires access
to the data over the entire graph. The system must comprise
a fusion center, which initiates the update process described
in (6) only after receiving data from all K agents.

4. RIEMANNIAN DIFFUSION ADAPTATION

As discussed above, to execute the centralized stochastic so-
lution (6), one would need simultaneous access to informa-
tion from all nodes of the graph to update a new estimate
wt. In the case of Euclidean spaces, this challenge has been
tackled by the well-known diffusion adaptation strategies [5,
6], which only require communication across local neighbor-
hoods of the graph. This paper aims to generalize such strate-
gies on Riemannian manifolds to solve (1) using only local
interaction and information exchange among network agents.

In the decentralized setting, after initializing the solution
wk,0 ∈ M for all k, agent k is particularly interested in solv-
ing (1) with the following Riemannian SGD algorithm:

wk,t = Rwk,t−1

(
− λh(wk,t−1,xk,t−1)

)
, (7)

where λ > 0 is a step-size parameter and h(w,xk) denotes
a stochastic approximation of the Riemannian gradient of the
loss fk(w), satisfying:

Exk

{
h(w,xk)

}
=

∫
h(w,xk)dP (xk) = ∇fk(w) .

A common approach to construct the stochastic approxima-
tion h(wk,t,xk,t) is to compute the Riemannian gradient of
the stochastic approximation of the loss function (2), approx-
imating xk by the instantaneous realization xk,t at time t.
Note, however, that the iterative equation (7) does not benefit
from exchanging information among neighboring agents.

Several distributed strategies have been proposed to min-
imize a global cost function defined in Euclidean space in a



fully decentralized manner [3, 4, 5, 6]. The appeal of dif-
fusion strategies [5, 6] arises from their inherent attributes
of scalability, robustness, and the facilitation of continuous
learning and adaptation in response to drifts in the location of
the minimizer. There exist mainly two variations of the dif-
fusion adaptation strategies, namely, the adapt-then-combine
(ATC) and the combine-then-adapt (CTA).

In the following, we propose two diffusion-adaptation-
based strategies to estimate the solution w in a distributed
manner through local adaptation and information exchange
on a Riemannian manifold M. The proposed method is based
on two steps: an adaptation step, where a node-wise Rieman-
nian SGD updates the estimated solution at each node, and a
combination step, in which the solutions at different nodes are
exchanged and combined. The combination step is performed
by computing the weighted Fréchet means of the solutions at
the neighborhood of each graph node.

More specifically, the Riemannian ATC diffusion strategy
for solving (1) takes the following form at each agent k:

ψk,t = Rwk,t−1

(
− λh(wk,t−1,xk,t−1)

)
,

wk,t = arg min
w∈M

∑
l∈Nk

alk
{
d2M(w,ψl,t)

}
, (8)

where Nk denotes the set of nodes in the neighborhood of
node k (including k itself), and the weighting coefficients alk
are non-negative and add to one over l ∈ Nk:

alk ≥ 0,

K∑
l=1

alk = 1, and alk = 0 if l /∈ Nk . (9)

The condition (9) means that the matrix A ≜ [alk] is left-
stochastic. The Riemannian ATC diffusion (8) contains two
steps. The first is an adaptation step where agent k uses its
own data xk,t−1 to update its solution ψk,t. The second step
is a combination step where the intermediate estimates {ψl,t}
from the neighborhood of agent k are combined according to
the weighting coefficients {alk} to obtain the estimate wk,t.

A similar implementation can be procured through the re-
ordering of the adaptation and combination steps. In the Rie-
mannian CTA implementation, agent k initially combines the
prior estimations of its neighbors to derive the intermediate
estimate ψk,t, subsequently applying its data to update this
intermediate estimate:

ψk,t = arg min
w∈M

∑
l∈Nk

alk
{
d2M(w,wl,t−1)

}
,

wk,t = Rψk,t

(
− λh(ψk,t,xk,t)

)
.

(10)

The Riemannian ATC and CTA strategies are summarized
in Algorithms 1 and 2. In Euclidean spaces, the combina-
tion step implemented by diffusion strategies, as described

Algorithm 1 Riemannian ATC diffusion
Initialize {wk,−1} for all k with a random point on M. Given
coefficients {alk} satisfying (9), for each time t ≥ 0 and for
each node k, repeat:
ψk,t = Rwk,t−1

(
− λh(wk,t−1,xk,t−1)

)
,

wk,t = argminw∈M
∑

l∈Nk
alk

{
d2M(w,ψl,t)

}
.

Algorithm 2 Riemannian CTA diffusion
Initialize {wk,−1} for all k with a random point on M. Given
coefficients {alk} satisfying (9), for each time t ≥ 0 and for
each node k, repeat:
ψk,t = argminw∈M

∑
l∈Nk

alk
{
d2M(w,wl,t−1)

}
,

wk,t = Rψk,t

(
− λh(ψk,t,xk,t)

)
.

in [5, 6], can be understood as the computation of a weighted
mean from the neighborhood of agent k. However, when
dealing with manifold-valued data, we propose to generalize
the solution of the combination step in Riemannian ATC (8)
and CTA (10) as a weighted Fréchet mean [22], a minimum
of the expected variance of the Riemannian distance dM. The
weighted Fréchet mean serves as a generalization of the center
of mass in Euclidean domains, to a manifold M. To compute
this weighted Fréchet mean on M, one can employ various
techniques such as Riemannian optimization [2] or recursive
estimation [23]. In this work, we considered a Riemannian
steepest descent algorithm with L iterations.

5. NUMERICAL EXPERIMENTS

We considered applying our algorithms to the online PCA
problem with xk ∈ Rn being data samples observed by each
agent k. For the global estimation, the online centralized PCA
problem can be defined as [24]:

min
π(U)∈Gp

n

− 1

K
EX

{
tr(UTXXTU)

}
, (11)

where X = [x1, . . . ,xK ] is the collection of data over all
agents and π(U) represents the global estimate. Note that
though various works formulate PCA on the Stiefel mani-
fold [13, 14, 15, 16], the loss function in (11) is invariant to
orthonormal transformations. Thus, we formulated the prob-
lem on the Grassmannian manifold since it makes the solution
unique [24]. In the decentralized setting, we considered the
following problem:

min
π(Uk)∈Gp

n

−Exk

{
tr(UT

k xkx
T
kUk)

}
, (12)

where π(Uk) represents the local estimate at agent k. In the
online setting, the expectation in the loss functions of (11)
and (12) was approximated by realizations xk,t and Xt at
each time instant t.



(a) Graph topology.
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(b) MSD results on synthetic data.
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(c) MSD results on real data.

Fig. 1: Illustration of the graph topology and MSD performance of the algorithms on synthetic and real data.

The Riemannian gradient of the stochastic approximation
of the loss function in (12) on the Grassmann manifold was
computed using the Euclidean gradient and (4), leading to:

h(Uk,t,xk,t) = 2(I −Uk,tU
T
k,t)xk,tx

T
k,tUk,t . (13)

The Riemannian gradient of the loss function for the central-
ized problem in (11) was computed similarly. The retrac-
tion and the geodesic distance used in the centralized, ATC
and CTA strategies in (6), (8) and (10) are defined in (5)
and (3), respectively. In order to evaluate the accuracy of
the solutions, we considered the Grassmann distance (3) be-
tween the estimates at each time instant π(Uk,t) and the op-
timal solution π(U∗), and we defined the mean square devia-
tion (MSD) accordingly as (1/K)

∑K
k=1 E

{
d2Gp

n
(Uk,t,U

∗)
}

.
Similar MSD definitions were used for the centralized and
non-cooperative solutions. We considered both synthetic and
real data to demonstrate the effectiveness of our strategy. Fig-
ure 1a illustrates the graph topology used for simulations,
which includes a total of K = 20 agents. We selected the
weights in matrix A with Metropolis rule [25] and L = 10
iterations in the combination step.

5.1. Synthetic data

We generated synthetic data as in [14]. First, we set n = 10,
p = 5 and independently sampled 1000K data points accord-
ing to the multivariate Gaussian model to obtain a matrix S ∈
Rn×1000K . Let S = UΣV T be its truncated SVD. We mod-
ified the distribution of Σ as Σ′ = diag(σi) with σ = 0.8 and
i = 0, · · · , n− 1 to reset S as S′ = UΣ′V T . We randomly
shuffled and split the columns of S′ ∈ Rn×1000K into 1000
subsets to obtain Xt for all time instants t = 1, . . . , 1000.
The simulations used fixed step sizes Λ = λ = 0.08, and
the MSD results were averaged over 100 times independent
Monte Carlo experiments.

Fig. 1b shows the MSD learning curves for Riemannian
centralized (6), non-cooperative (7), ATC diffusion (8), and
CTA diffusion (10). It can be seen that both Riemannian ATC
and CTA diffusion strategies achieved a significant improve-
ment in MSD performance compared to the non-cooperative

case, which indicates the benefit of information exchange.
The centralized solution achieved the lowest MSD, as it can
access information over the whole graph at every iteration.
The Riemannian ATC and CTA diffusion algorithms reached
intermediate performance. The ATC strategy showed slightly
lower MSD, but both approaches yielded similar performance
after their combination step, which reduced the estimation
variance. This is in agreement with behavior observed in dif-
fusion adaptation algorithms on Euclidean spaces [5, 6].

5.2. Real data

We also obtained numerical results on the MNIST dataset [26].
The dataset contains 70000 hand-written images with n =
784 pixels. The data matrix was normalized such that the ele-
ments are in the range [0, 1] and then centered. We randomly
shuffled the images, partitioned them into K = 20 subsets,
and then ran the algorithms to compute the first p = 10 prin-
cipal components with the fixed step sizes Λ = λ = 0.004.
The MSD of the different methods, shown in Fig. 1c, behaves
similarly as in the experiment with synthetic data, showing
the same relative differences between the performances of the
different approaches. However, we note that the MSD values
between the two experiments are not directly comparable
since the number of components p was different.

6. CONCLUSION

In this paper, Riemannian diffusion adaptation over graphs
was proposed with application to online distributed PCA. The
strategy consisted of two steps, an adaptation step where Rie-
mannian SGD was used to estimate the solution on the man-
ifold at each node, and a combination step where these esti-
mates were combined by computing their weighted Fréchet
means over the neighborhood of each graph node. Two ap-
proaches were proposed, namely, Riemannian ATC and CTA
diffusion. Experimental results on both synthetic and real data
demonstrated the efficacy of the proposed strategy. Future
work will investigate the performance analysis of the algo-
rithm and further experimental comparisons.
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